
Page 15 FoxRockX March 2008

Parsing and Building File
and Path Names
Tamar E. Granor, PhD

I started using FoxBase+ nearly 20 years ago. In
the evolution from that remarkably able product
to Visual FoxPro 9, hundreds, perhaps thousands,
of new elements have been added to the FoxPro
programming language. Each new version has
introduced not only new capabilities, but new
ways to do old things.

Old habits die hard. Once you know how to
do something, changing to a new way takes some
effort. But the new approaches are often faster,
more readable, or both. Now that the VFP lan-
guage has stabilized, it's a good time to work on
writing the best code we can with the tools at
hand.

In this series, I'll look at some of the new ap-
proaches that have been introduced over the years
and try to make a compelling case for change.

This first article looks at techniques for taking
apart and putting together files and paths. These
are fairly common tasks, both for developer tools
and end-user applications. We may need to put a
file in a particular place or create a back-up copy
of a file, use the same name but a different exten-
sion, or any number of similar tasks.

The structure of files and paths
Filenames consist of a path, a stem and an exten-
sion. The path ends with the rightmost backslash.
The extension begins after the rightmost period.
Everything in between is the stem.

With such a strictly defined structure, it's not
hard to take filenames apart and put them back
together, using FoxPro's powerful string manipu-
lation language. You can use functions like AT()
(or better yet, RAT()), LEFT(), RIGHT() and
SUBSTR(), together with easy concatenation using
the + operator.

However, there's an easier, more readable,
way. Starting in VFP 6, the language includes a set
of functions with names like JustPath() and Force-
Ext() that make file and path manipulation a piece
of cake. Not only that, but these functions were in
the FoxTools library at least as far back as FoxPro
2.5 for Windows.

Let's look at specific tasks to see why you
should learn and use these functions. Before we

start, let's define some terminology a little more
clearly. In particular, the term "filename" is am-
biguous.

A path is a sequence of folders, possibly be-
ginning with a drive designator. For example,
D:\Fox\VFP9. A path may or may not include a
terminating backslash.

An extension is the portion of a filename that
normally indicates the file type. In the Windows
world, it's usually three characters. For example,
DOC, PRG or JPG. There are a few commonly
used four-character extensions, such as JPEG and
HTML. The extension follows a period in the file-
name.

A stem or filestem is the main part of the file-
name that indicates the name of a particular file.
For example, in VFP.EXE the stem is VFP.

Filename can refer to either the stem plus the
extension, such as VFP.EXE, or the complete ref-
erence including the path, such as D:\Fox\VFP9
\VFP.EXE. To avoid this ambiguity, for the rest of
this article, I'll use filename to refer to only stem
plus extension, and use full name or fully-pathed
filename to refer to the complete reference.

Constructing fully-pathed filenames
There are several tasks you might want to do
around the idea of putting parts together into full
names. Probably the most common is taking a
path and a filename to create a fully-pathed file-
name.

In the examples here, assume that cPath con-
tains the path and cFile contains the filename.

When handling this task manually, the main
issue is ensuring you have the final backslash be-
tween the path and the stem. Here's one way to
do that:

cFullName = cPath
IF RIGHT(cPath, 1) <> "\"
 cFullName = m.cFullName + "\"
ENDIF
cFullName = m.cFullName + m.cFile

Of course, this is a common enough operation
that you might want to write it in a single line and
you can do that, thanks to the IIF() function:

March 2008 FoxRockX Page 16

cFullName = m.cPath +,;
 IIF(RIGHT(m.cPath,1) = "\",;
 "", "\") + m.cFile

Both approaches give the same result. How-
ever, in both cases, you have to take a good look
at the code to figure out what it does. A more
maintainable approach is to use the ForcePath()
function. It accepts two parameters, a filename
and a path, and returns a fully-pathed filename.
Here's the same example:
cFullName = FORCEPATH(m.cFile, m.cPath)

This version is so much more readable that I'd
pay a small speed penalty to have it in my code,
and it turns out that's what it costs, sort of. In my
testing, the five-line version of the old way takes
about twice as long as the one-liner. The Force-
Path() version takes about 30% longer than the
one-liner. However, all three are so fast that speed
is essentially a non-issue. On my production ma-
chine, a loop with 100,000 passes took between 0.1
and 0.2 seconds, depending on the version. So,
unless you're doing intensive file processing with
a need to build millions of filenames, speed
shouldn't be a consideration. For readability and
maintainability, the winner is clear.

ForcePath() is actually much more powerful
than this examples demonstrates. Later in this
article, I'll show you how you can use it to avoid a
whole lot of parsing.

Adding the backslash
The tedious step in the old versions of the previ-
ous example is ensuring that the path ends with a
backslash. This is actually another thing we can
do better with a built-in function. As the earlier
code demonstrates, the old way to do this is with
IF or IIF(), like this:

* More readable old version
m.cPathWithBackSlash = m.cPath
IF RIGHT(m.cPath, 1) <> "\"
 m.cPathWithBackSlash = ;
 m.cPathWithBackSlash + "\"
ENDIF

* One-line old version
cPathWithBackSlash = m.cPath + ;
 IIF(RIGHT(m.cPath,1) = "\", "", "\")

But the AddBS() function provides a more
readable alternative:
cPathWithBackSlash = ADDBS(m.cPath)

The timing for this one is interesting. If the
path already has the backslash, the three ap-
proaches all take essentially the same time. Over
10,000 passes, the differences were thousandths of
a second on my machine. However, if the path
needs the backslash added, my tests found the
one-liner and the AddBS() versions essentially

identical, but the more verbose version, using IF,
took about twice as long.

Adding an extension
Just as you might combine a path and a filename
to get a fully-pathed filename, you can combine a
filestem and an extension to get a filename. Here,
the key issue in the old version is ensuring you
have the period between the stem and the exten-
sion.

For these examples, assume cStem contains
the filestem and cExt contains the extension.

Here's the old way, using concatenation. Al-
though it's unlikely that the filestem includes the
trailing period, the code checks for it anyway. (For
completeness, you might even want to check the
extension for a leading period, so you don't end
up with two.)

cFile = m.cStem
IF RIGHT(m.cFile,1) <> "."
 cFile = m.cFile + "."
ENDIF
cFile = m.cFile + m.cExt

As with files and paths, there is a less read-
able, one-line of this:

cFile = m.cStem +;
 IIF(RIGHT(m.cFile,1)= ".",;
 "",".") + m.cExt

But the ForceExt() function supersedes both
versions, providing a clear, readable line of code:
cFile = FORCEEXT(m.cStem, m.cExt)

Once again, the one-liner and the new way
take about the same time, while the longer version
using IF takes about 2.5 times as long. Also, as
with ForcePath(), ForceExt() is much more power-
ful than this example shows. I'll show you where
it really shines later in this article.

All of the examples so far may seem a little
cooked, since we're often handed fully-pathed
filenames that we need to manipulate. That usu-
ally involves parsing them into their components
and, frequently, putting them back together dif-
ferently. We'll look next at the parsing tasks.

Separating the path and filename
Probably the most common parsing task is sepa-
rating the path from the filename. That is, given a
fully-pathed filename, extract the path and the
filename into separate variables. Sometimes, you
only need one or the other. For these examples,
we'll assume cFullName contains a fully-pathed
filename.

Using VFP's string functions, you can separate
the path and filename like this:

Page 17 FoxRockX March 2008

* The old way
LOCAL nPathEnds
nPathEnds = RAT("\", m.cFullName)
cPath = LEFT(m.cFullName, m.nPathEnds-1)
cFile = SUBSTR(m.cFullName, m.nPathEnds + 1)

That's not too much code, but it certainly
doesn't tell you what it's doing. The JustPath()
and JustFName() functions let you understand the
code immediately. Here's the new way:

cPath = JUSTPATH(m.cFullName)
cFile = JUSTFNAME(m.cFullName)

The timing for this code surprised me. I ex-
pected the new way to be much faster. In fact, the
comparison depends on the length of the path.
With no path, just a filename, the new way is the
same or faster. After that, the longer the path, the
faster the old way is in comparison to the new.
When I saw this result, I expected it to be a func-
tion of the number of levels (how many folders to
traverse), but in fact, it seems to be based on the
number of characters. Regardless, all of this is
quite fast. The slowest test I saw took less than 0.4
seconds for 10,000 passes.

Finding the extension
Another common task is grabbing the extension
from a filename, whether there's a path or not.
This allows you to find out what kind of file
you're dealing with. As with path, sometimes you
want to grab both filestem and extension, while at
others, you only need the extension.
Here's the old way to grab just the extension:

LOCAL nPeriodAt

nPeriodAt = RAT(".", m.cFullName)
IF nPeriodAt = 0
 cExtension = ""
ELSE
 cExtension = RIGHT(m.cFullName, ;
 LEN(m.cFullName) - m.nPeriodAt)
ENDIF

The new way uses the JustExt() function:
cExtension = JUSTEXT(m.cFullName)

Interestingly, in this case, the new way is
faster, except in the case of a file with a long path
and no extension. I suspect what's going on there
is that JustExt() is walking backward from the end
of the string looking for a period and not finding
one. In all the other cases I tested, using JustExt()
took from one-half to two-thirds as long as the old
way. As with all the other tests, though, both ver-
sions were so fast as to make the question moot.
In this case, 10,000 passes in under 0.2 seconds.

Extracting just the stem
The last in the set of "pulling filenames apart"
tasks is extracting just the filestem, the part in be-

tween the path and the extension. Like the other
tasks, the old way involves parsing to find the
final backslash and the final period, while the new
way is a single function call, in this case, to Just-
Stem().

The code for the old way is more complicated
than the other cases because it has to deal with
filenames with no path, filenames with no exten-
sion, filenames with neither and filenames with
both:

LOCAL nPathEnds, nPeriodAt

nPathEnds = RAT("\", m.cFullName)
nPeriodAt = RAT(".", m.cFullName)
DO CASE
CASE nPathEnds = 0 AND nPeriodAt = 0
 * All we have is the stem
 cFileStem = m.cFullName

CASE nPathEnds = 0
 * No path, just filename
 cFileStem = LEFT(m.cFullName, m.nPeriodAt-1)

CASE nPeriodAt = 0
 * No extension
 cFileStem = SUBSTR(m.cFullName, ;
 m.nPathEnds + 1)

OTHERWISE
 * Have all parts, extract
 nFullLen = LEN(m.cFullName)
 nExtLen = nFullLen - m.nPeriodAt
 nStemLen = m.nFullLen - m.nPathEnds ;
 - m.nExtLen - 1
 cFileStem = SUBSTR(m.cFullName, ;
 m.nPathEnds + 1, m.nStemLen)

ENDCASE

From a code point of view, it's easy to see why
the new way is an improvement:
cFileStem = JUSTSTEM(m.cFullName)

Not surprisingly, given how much code is in-
volved in the old way, the new way was faster in
every case I tested. The factor ranged from half
the time of the old way down to a quarter of the
time.

The Full Monty
Of course, what you sometimes want is to com-
bine all of this and pull a filename into its compo-
nent parts. Since getting the filestem is more com-
plex using the old way, my code for the complete
parse is based on that and simply adds the code to
set the path and extension to each of the four
cases.

LOCAL nPathEnds, nPeriodAt

nPathEnds = RAT("\", m.cFullName)
nPeriodAt = RAT(".", m.cFullName)
DO CASE
CASE nPathEnds = 0 AND nPeriodAt = 0
 * All we have is the stem
 cFileStem = m.cFullName
 cPath = ""
 cExtension = ""

March 2008 FoxRockX Page 18

CASE nPathEnds = 0
 * No path, just filename
 cFileStem = LEFT(m.cFullName, m.nPeriodAt-1)
 cPath = ""
 cExtension = RIGHT(m.cFullName, ;
 LEN(m.cFullName) - m.nPeriodAt)

CASE nPeriodAt = 0
 * No extension
 cFileStem = SUBSTR(m.cFullName, ;
 m.nPathEnds + 1)
 cPath = LEFT(m.cFullName, m.nPathEnds - 1)

OTHERWISE
 * Have all parts, extract
 nFullLen = LEN(m.cFullName)
 nExtLen = nFullLen - m.nPeriodAt
 nStemLen = m.nFullLen - m.nPathEnds ;
 - m.nExtLen - 1
 cFileStem = SUBSTR(m.cFullName, ;
 m.nPathEnds + 1, m.nStemLen)
 cPath = LEFT(m.cFullName, m.nPathEnds - 1)
 cExtension = RIGHT(m.cFullName, ;
 LEN(m.cFullName) - m.nPeriodAt)
ENDCASE

The new way is just three lines, like this:

cFileStem = JUSTSTEM(m.cFullName)
cPath = JUSTPATH(m.cFullName)
cExtension = JUSTEXT(m.cFullName)

My tests show the new way to be faster, ex-
cept when there's a long path and no extension.
No doubt that's the same slowdown encountered
when extracting the extension from such a file-
name.

Forcing paths and extensions
Finally, it's time to look at the real power of Force-
Path() and ForceExt(). In the earlier examples in
this article, we assumed that the filename didn't
include a path or extension, respectively. In fact,
these functions do as their names suggest, and
remove an existing path or extension before add-
ing the new one.

So, using ForcePath(), you can start with a
fully-pathed filename and end up with a fully-
pathed filename, but pointing to a different path.
Similarly, ForceExt() lets you start with a filename
(with or without path) including extension and
returns a filename that's the same except that the
extension has been changed.
Here's the old way of forcing a path:

nPathEnds = RAT("\", m.cFullName)
cFile = SUBSTR(m.cFullName, m.nPathEnds + 1)

cNewName = cNewPath
IF RIGHT(cPath, 1) <> "\"
 cNewName = m.cNewName + "\"
ENDIF
cNewName = m.cNewName + m.cFile

Here's the new way, once again, a one-liner:
cNewName = FORCEPATH(m.cFullName, m.cNewPath)

In my tests, the new way takes from one-third
to one-half the time of the old way. The old way
takes about the same time no matter what the
original filename is, and whether or not it has a
path. The new way varies with the length of the
original path.
Here's the old way of forcing an extension:

nPeriodAt = RAT(".", m.cFullName)
IF nPeriodAt = 0
 cNewName = m.cFullName
ELSE
 cNewName = LEFT(m.cFullName, ;
 m.nPeriodAt - 1)
ENDIF
cNewName = m.cNewName + "." + m.cNewExtension

Here's the new way:

cNewName = FORCEEXT(m.cFullName, ;
 m.cNewExtension)

Again, the new way is faster across the board.
As in the other tests, the slowest case is with a
long path and no extension, but even in that case,
the new way took only about two-third the time
of the new way.

Put these functions to work
The functions for parsing and constructing file-
names are not only faster in most cases, but make
your code far more readable. Plan to use them in
all new code.

What about older code? Should you go back
and rewrite to use these functions? This is a ques-
tion that will occur throughout this series. My
general feeling is that you can leave older code
alone unless it's giving you a problem or you have
some other reason to touch the code in question.
That is, when you're making changes to a pro-
gram anyway, whether to fix a bug or just for
refactoring, updating it to use the newer tech-
niques makes sense. But if code is working and
performing satisfactorily, leave it alone.

All of the code shown in this article is in-
cluded in a single program file, UsingPathAnd-
FileFunctions.PRG. My timing tests are in a sec-
ond program, TimingPathAndFileFunctions.PRG.
Tamar E. Granor, Ph.D., is the owner of Tomorrow's Solutions,
LLC. She has developed and enhanced numerous Visual
FoxPro applications for businesses and other organizations.
She currently focuses on working with other developers
through consulting and subcontracting. Tamar is author or co-
author of nine books including the award winning Hacker's
Guide to Visual FoxPro and Microsoft Office Automation with
Visual FoxPro. Her most recent books are Taming Visual Fox-
Pro's SQL and What's New in Nine: Visual FoxPro's Latest
Hits. Her books are available from Hentzenwerke Publishing
(www.hentzenwerke.com). Tamar is a Microsoft Certified Pro-
fessional and a Microsoft Support Most Valuable Professional.
Tamar speaks frequently about Visual FoxPro at conferences
and user groups in North America and Europe, including every
FoxPro DevCon since 1993. You can reach her at
tamar@thegranors.com or through
www.tomorrowssolutionsllc.com.

